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Strength Failure Theories 
for an Angle Lamina

• The failure theories are generally based on the normal and shear 
strengths of a unidirectional lamina.

• In the case of a unidirectional lamina, the five strength parameters are:

❑ Longitudinal tensile strength

❑ Longitudinal compressive strength 

❑ Transverse tensile strength

❑ Transverse compressive strength

❑ In-plane shear strength
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Tsai-Hill Failure Theory

Based on the distortion energy theory, Tsai and Hill proposed that a 
lamina has failed if:

• This theory is based on the interaction failure theory.

• The components G1 thru G6 of the strength criteria depend on the 
strengths of a unidirectional lamina.
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Components of Tsai-Hill Failure Theory

Apply                      to a unidirectional lamina, then the lamina will fail. 
Hence, Equation reduces to: 
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Components of Tsai-Hill Failure Theory

Apply                      to a unidirectional lamina, then the lamina will fail. 
Hence, Equation reduces to: 
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Components of Tsai-Hill Failure Theory

Apply                         to a unidirectional lamina, and assuming that the 
normal tensile failure strength is the same in direction (2) and (3), then the 
lamina will fail. Hence, Equation reduces to:
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Components of Tsai-Hill Failure Theory

Apply                           to a unidirectional lamina, then the lamina will fail. 
Hence, Equation reduces to
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Components of Tsai-Hill Failure Theory
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Tsai-Hill Failure Theory – Plane Stress

Because the unidirectional lamina is assumed to be under plane stress - that 
is,                                        , = τ = τ = σ 023313
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Tsai-Hill Failure Theory

• Unlike the Maximum Strain and Maximum Stress Failure Theories, the Tsai-
Hill failure theory considers the interaction among the three unidirectional 
lamina strength parameter.

• The Tsai-Hill Failure Theory does not distinguish between the compressive 
and tensile strengths in its equation. This can result in underestimation of 
the maximum loads that can be applied when compared to other failure 
theories.

• Tsai-Hill Failure Theory underestimates the failure stress because the 
transverse strength of a unidirectional lamina is generally much less than its 
transverse compressive strength.



Example 4.1 

Find the maximum value of S>0 if a stress of SSS xyyx 4 and,3,2 =−== 

is applied to a 60o lamina of Graphite/Epoxy.  Use Tsai-Hill Failure Theory.  
Use properties of a unidirectional Graphite/Epoxy lamina given in Table 2.1 
of the textbook Mechanics of Composite Materials by Autar Kaw.

FIGURE 4.1

Off-axis loading in the x-direction

http://autarkaw.com/books/composite/index.html
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The stresses in the local axes are:



Example 4.2
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Modified Tsai-Hill Failure Theory
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Tsai-Wu Failure Theory

• Tsai-Wu applied the failure theory to a lamina in plane stress. A lamina is 
considered to be failed if: 

is violated. This failure theory is more general than the Tsai-Hill failure 
theory because it distinguishes between the compressive and tensile 
strengths of a lamina.

• The components H1 – H66  of the failure theory are found using the five 
strength parameters of a unidirectional lamina.
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Components of Tsai-Wu Fail
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Components of Tsai-Wu Fail
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Components of Tsai-Wu Fail
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( ) ( ) .=H+H ultult
1

2

1266126 

e) Apply

to a unidirectional lamina, the lamina will fail.  Equation

(2.152)  reduces to:

( ) ( ) .=H+H ultult
1

2

1266126 −

f) Apply

From Equations (2.157) and (2.158),

,=H 06

( )
.

1
2

12

66

ult

=H


( )
ult121221 ,0,0  −===



Determination of  𝐇𝟏𝟐
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Apply equal tensile loads along the two material axes in a unidirectional composite.  If

,=τ= σ σ=σ xyyx 0 is the load at which the lamina fails, then:
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Determination of  𝐇𝟏𝟐

H1σ1+H2σ2+H6τ12+H11
2
1 +H22 

2
2 +H66 

2
12 +2H12σ1σ2< 1 

Take a 450 lamina under uniaxial tension σ x . The stress σ x at failure is noted.  

If this stress is 0=σ x then using Equation (2.94), the local stresses at failure are:
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Empirical Models of 𝐇𝟏𝟐
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as per Tsai-Hill failure theory8

as per Hoffman criterion10

as per Mises-Hencky criterion11



Example 4.3

Find the maximum value of 0S if a stress 3S- =  2S, = yx  and 4S = xy

are applied to a 600 lamina of Graphite/Epoxy.  Use Tsai-Wu failure theory.  Use the 
properties of a unidirectional Graphite/Epoxy lamina from Table 2.1.



Example 4.3

• Using Equation (2.94), the stresses in the local axes are:

 S.

.-

.-

.

=

 

S

S-

S

.-..-

.-..

...

 = 

τ

σ

σ











































































1041650

1027140

1017140

4

3

2

500004330043300

866002500075000

866007500025000

1

1

1

12

2

1



Example 4.3
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Example 4.3

Substituting these values in Equation (2.152), we obtain:

( )( ) ( )( )S.-.+S. - 714210093271410 8
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or

MPa.S< 3922



Example 4.3

If one uses the other two empirical criteria for H12 as per Equation (2.171), one obtains:
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Summarizing the four failure theories for the same stress-state, the value of S obtained is:

S     = 16.33 (Maximum Stress failure theory),
         = 16.33  (Maximum Strain failure theory),
         = 10.94  (Tsai-Hill failure theory),
         = 16.06 (Modified Tsai-Hill failure theory),
         = 22.39  (Tsai-Wu failure theory).



Strength Failure Theories 
of an Angle Lamina

• The failure theories are generally based on the normal and shear 
strengths of a unidirectional lamina.

• An isotropic material generally has two strength parameters:

 normal strength and shear strength.

• In the case of a unidirectional lamina, the five strength parameters are:

❑ Longitudinal tensile strength

❑ Longitudinal compressive strength 

❑ Transverse tensile strength

❑ Transverse compressive strength

❑ In-plane shear strength
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Experimental Results and Failure Theories

• Tsai and Wu compared the results from various 
failure theories to some experimental results. He 
considered an angle lamina subjected to a uniaxial 
load in the x-direction.
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Fig 2.31 – first edition 



Experimental Results and 
Maximum Stress Failure Theory
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Fig 2.33 – second edition 

Fig 2.31 – first edition 
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FIGURE 4.2

Maximum normal tensile stress in x-direction

as function of angle of lamina using maximum

stress failure theory



Experimental Results and 
Maximum Strain Failure Theory
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Fig 2.33 – second edition 

Fig 2.31 – first edition 
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FIGURE 4.3

Maximum normal tensile stress in x-

direction as function of angle of lamina 

using maximum Strain failure theory



Experimental Results and 
Tsai-Hill Failure Theory
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Fig 2.31 – first edition 
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FIGURE 4.4

Maximum normal tensile stress in

x-direction as function of angle of

lamina using Tsai-Hill failure theory
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Experimental Results and 
Tsai-Wu Failure Theory
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FIGURE 4.5

Maximum normal tensile stress in

x-direction as function of angle of

lamina using Tsai-Wu failure theory



Comparison of Strength Ratios

S     = 16.33 (Maximum Stress failure theory),
         = 16.33  (Maximum Strain failure theory),
         = 10.94  (Tsai-Hill failure theory),
         = 16.06  (Modified Tsai-Hill failure 
theory),
         = 22.39  (Tsai-Wu failure theory)
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Hygrothermal Stress-Strain 
Relationship

• For a unidirectional lamina

• Thermally induced strains:

• Moisture induced strains:
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Hygrothermal Stress-Strain 
Relationship

• For a unidirectional lamina
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Hygrothermal Stress-Strain 
Relationship

• For an angular lamina

• Thermally induced strains:

•                                                    Moisture induced strains:
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Transformation of CTE

• For an angular lamina
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Transformation of Coefficients of Moisture Expansion

• For an angular lamina
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Example 4.4

Find the following for a 60
0
 angle lamina of Glass/Epoxy 

a) coefficients of thermal expansion, 

b) coefficients of moisture expansion, 

c) strains under a temperature change of -100
0
C and a moisture absorption of 0.02 kg/kg. 

Use properties of unidirectional Glass/Epoxy lamina from Table 2.1. 



Example 4.4

a) From Table 2.1, 

C,/m/m 108.6 = 0-6
1   

C./m/m 1022.1 = 0-6
2   

Using Equation (2.181), gives 
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Example 4.4

b) From Table 2.1 

m/m/kg/kg,   0 = 
1  

m/m/kg/kg.    0.6 = 
2  

Using Equation (2.182) gives 
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Example 4.4

c) Now using Equations (2.179) and (2.180) to calculate the strains as. 
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